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ABSTRACT

The forward and reverse solutions of a manipulator with six joints are expanded up

to second order in the 24 joint parameters.
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INTRODUCTION

It is well known that the absolute accuracy of most available robotic manipulators

is relatively poor. If the robot is commanded to move to a certain position in world

space, it will actually move to a slightly different position. Typically, the

differences between the commanded and the actual position may be of the order of

.5% of the dimensions of the robot.. In absolute terms, this inaccuracy could be

between .1 and 1.2 inches (Kumar and Waldron 1981, Mooring 1983). The magnitude

of this error is significantly above acceptable tolerance limits for most manufacturing

*. applications.

If the robot is programmed by conventional teaching-by-doing methods, problems of

" absolute accuracy are of no importance because they are corrected through the visual

*" feedback of the human operator.

Current trends indicate, however, that in the near future robots will be programmed

off-line with the help of model based systems. In such an integrated environment, it

is of vital importance that the computer model of the robot maps, as closely as

possible, its physical pendant. Hence the need arises for developing mathematical
tools to obtain the signature of individual errors and project it into the model as

- closely as possible.

It is important to note that the overall errors of the robot are of a geometric and a

non-geometric kind. The latter ones may be due to joint compliance, gear

transmission errors and backlash (Whitney, et al. 1984; Mooring 1983; Whitney and

Lozinski 1984). The former ones may result from imprecise manufacturing of the

robot links and joints. Deviations in the relative link positions, i.e., encoder errors or
offsets, will be part of the geometric error.

Depending on the actual application of the manipulator, errors of one kind or
another may become predominant. In high speed assembly operations, in particular,

dynamic errors might be more important than errors in the manipulator geometry. In

applications like welding or slow motion/high precision tasks, the situation is likely

to be reversed.

.This paper attempts to establish a mathematical reference frame for geometric

errors only. No attempt is made to quantify the relative contribution of geometric

and non-geometric errors, since this ratio is application dependent and will also

depend on the design of the manipulator itself. Since in high speed operations high -

d 1
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- positional accuracy is desirable, we address the question of how to cope with

geometric deviations from the ideal manipulator conriguration. /,,4---.,

136 to manufacturing errors, each of the robot links &rill be slightly different from
the ideal one. For an N degree of freedom manipulator there will be N joints and N
links. Each of the links can be characterized by two dimensions: the normal

distance a between the joints it connects, and the twist angle a between the joint

axes it connects. If the design calls for certain values of a and a, the real robot
will have link values a + Aa and a + A&. Each joint sits between two links that
intersect the joint axis. The distance d between the subsection of the links, as well

as the angle 8 between the links measured on a plane normal to the joint axis,
characterizes the joint. If the design calls for certain values of d and e, the real

robot will have joint values d + Ad and 0 + A# (Paul 1981).

Each of the joint-link pairs achieves a rotation by an angle a, followed by a
translation of d and a in different directions, followed once more by a rotation by

an angle a. The real robot will effect these by amounts a + Ae, d + Ad, a + Aa and

0 + A8. The computation of subsequent rotation, translation and rotation is
straightforward. Of the various representations of the resulting screw displacement

that are possible (Rooney 1978), the most popular among roboticists is the use of
homogeneous 4 x 4 matrices. The concatenation of N such joint-link pairs gives the
final transformation that describes the translation and rotation of the end effector

relative to the base of the robot.

This calculation can be done for both the ideal and the real robot. For a six

degrees of freedom robot 6 x 4 - 24 joint-link parameters exist, but only six of
these parameters need to be controllable, the other eighteen remaining fixed and

uncontrolled. In the following, we will denote the 24 joint-link parameters by the
variables p, .... P2 4 with the first six pi ... P6 chosen to represent the six joint-link
variables that are being controlled. For the Stanford manipulator, they would be

* (pl ... p6) • (a1,6 2,d3 , 4,85#,6 ), whereas for the elbow manipulator described by Paul
(1981), they would be (pl ... P6 ) - (81,92#83#94085#86).

It is not difficult to compute, for both the ideal and the real robot, the so-calledd
forward solution that describes the translation and rotation of the end effector

relative to the robot base. The same formal expressions result for both robots, but

with the values p1  Api ... P24 
+ Ap2 4 replacing the values p 11... P24 ' if Ap, .... AP24

are the errors of the 24 joint-link parameters. Although the result for the real robot
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is considerably more complicated, it still is of manageable proportions and can be

given in an analytic expression.

Since the errors will be small, it is tempting to expand the real forward solution
around the ideal one in powers of the errors Ap 1 .... Pp24. Calculations by Chi-haur

Wu (1984) confirm the practical result that for the real robot, translation and rotation

of the end effector are not quite what they are meant to be (i.e., the translation and

rotation achieved by the ideal robot). They also show that the errors of a particular
link propagate in a complicated way through the other links that connect it to the

end effector.

The real problem arises if one wishes to find which values of the joint variables

Pl .....P6 assure a certain position of the end effector. Since the forward
transformation is highly nonlinear, its inversion is not a simple task. In practice, it

can only be done for relatively simple configurations where most of the 18 joint-link

parameters p7 ,...P 24 are identically zero. Since, by definition, this is not the case

for the real robot, the exact inverse solution of the real robot is almost impossible
to find! So far, even approximations to the real reverse solution have been lacking-
it was simply assumed that the real inverse solution is identical to the ideal one.

If a robot is given the task of reaching a particular position, the joints are adjusted

to values p,, ... P6 computed from the ideal reverse solution. If the robot were error
free, it would indeed reach the prescribed position. If it is not error free, the

prescribed position is not reached. This is because the ideal reverse solution is

being used to find the values p 1 ... P6" which are then propagated through the real

forward solution. Since ideal reverse and real forward solution do not close, errors

in the positioning of the end effector are the result.

The task of geometric robot calibration can be defined as finding the errors

Ap1 .... AP24 and constructing the appropriate real reverse and forward solutions. The
errors could, for example, be measured by triangulation of the robot.

An intermediate step to geometric robot self-calibration avoids this triangulation of

the joints and links of the robot, and replaces it by triangulation of the positioning

of the end effector. From these errors the errors Ap 1..... &P24 are deduced and then
used in the real forward solution. The task is to find corrections bpi ... tap 6 of the

joint-link variables so that the real robot (with Ap1, ... AP24 0 0) reaches the same
positioning as the ideal robot (with vanishing errors Ap1  a"" 4p 24 = 0). Once the

mapping how the joint corrections depend on the joint coordinates
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S 1 (p i1 ...P6)

(1.1)
PE(Ple .... #P6)

is established, it can be used for further error-free manipulations. This approach is

taken in this paper.

Complete geometric self-calibration would be a strategy by which the robot

searches for certain calibration points by skillful variation of 6p .... IP 6" The

resulting mapping like (1.1) could then be stored without actual evaluation and use of

the errors AP1 .... AP24 "

* 2 FORWARD SOLUTION

To find the forward solution for the real robot, one needs to start with the A

. matrices of the individual links.

*. The A matrix for the ideal robot is of the form (Paul 1981)

cos8. -sin8.cosa. sint9.sina. a.cos9.'

(sin8. cose.cosa. -cosO.sina. a.sinO.I

Ai 0 sins, cosa i  r. (2.1)

0 0 0 1

. and the A matrix of the real robot is

cos(8.+A8.) -sinW8.+A8.)cos(a.+&a.) sin(6+A8.)sin(a.+&a.) (a.+&a.)cosW. +A6.)
sinl8i*A) cos(0 S*8.)cos(a+&a.) -cos(6+WA.)sin(a +A&a) (a.+&a.)sin(8.+A*i)

- Ar 0 sin(a +a.) cos(a.+A&.) r.+Ar

0 0 0 1
(2.2)

These matrices are multiplied to obtain the ideal and real forward transformations

T-.A A A6' (2.3)1 2  .
Tr r r rAlA2 ... 6 (2.4)

rAlthough the complete forward transformation T can be written down in closed

* . . - . .



form, such an expression would be of little practical use. Although the inverse
transformation (T')- ' of the ideal forward transformation can be written down in

analytic form, it is unlikely that such an expression could be found for the real

inverse (Tr)- 1.

Since the differences AO &..... A 6, Aa ..... A 6 , Ar 1 ... Ar 6 and Aa 1l .... Aa6 are assumed to

be small, it is more advantageous to expand Tr around Ti in powers of these errors.

This gives, up to second order in errors AA of the A matrices.

Tr - Ti = Tr(AA. 0 0) - Tr(AA. = 0)

6
= I A 1 ... ,AA .... A6

i=1

6 6
+ A 1 ..... ,A .... AA. ...,A 6  (2.5)

6
"+ A A1 ....A Ai .. A. A6

1= 1

Since

aA. a A. aA. aA.
' = a 'a - •0 for i j (2.6)

c3e. Ola. Dr. -aa.
J J J J

the linear errors are given by

"" A. o&A. o aA. o aA.1

AA. = 'A8 + &A +Aa + - t A - Aa. (2.7)-'aOe. ' a. a~r. j' a. (27a . , , , 49 ,

Aa.=Ar. A0.=Ar. AO=,Aa A.=Aa.
,-=a.=0 =Aa.=0' =Aa.=0 =&r=0

i' o32Ai o32A i 2A 2A
2 a2A. 2 a2A2 a2 A. a2A. 2AA -j (A) + (A + 5- ) (r) (Aa.) (2.8)

A .Ar. AO. r. AG.=a. AA :A&.
=&a=0 =Aa.=0' =Aa.=O =Ar.=0

III I

/
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a2 A.
+ ' e..+..

Ar.-Aa.-O

with no sums on tne index i. All the error matrices AA 1, ... FAA 6 have by now been
represented as homogeneous matrices multiplied by the 24 scalars AO. Aa., Ar., Aa.

where i - ,..6

* Fortunately, the expansion (2.8) looks more complicated than it really is. Megahed
* and Renaud (1982) and Wu (1984) noticed that the first derivatives of the

transformation matrices A. are linear functions of the matrices themselves and can
* be written as

A Q (2.9)

a A a (2.10)

DA.
SA.Qar (2.12)

ar.

where

/ 0 -Cosa, sina. 0

Q. -sina.' 0 0 -asina. ) (2.13)
0 oa 0 0' 0cs

0 0 0

0 (2.14)

a. . . . . . . . . . . . . .Q....1*0.0
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00 00
0 0 0 sina.Qir 0 0 0 Cos (2.15)
0 0 0 O'

* 0 0 0 1
0 0 0 0

Qa 0 0 0 0 (2.16)

0 0 0 0

Thus the differentiations are merely matrix multiplications

AA. = A.C. AG. + QaAa. + Q. Ar. + QaAa.] (2.17)
I I I I I I I

and

A2 A. = A.[Q.OQ(o ,&.) 2 + QaQa (A.) 2  QrQ.r (Ar) 2 + QaQal )2

+ QOQa (G.Aa.) + ... J (2.18)
! I a

It should also be noted that Qa and Q are the same for all the links. Finally, the
difference Tr - Ti can be written as a multiple of T':

Tr -T
i

6
, (A 1...A.Q.6 A.+1 ..A6) AGi + ... (2.19)

',}' i=1

6
6 -1 A 1... A61 A i +

6
= [C .i .! + "A . + Or Ar, + O'Aa.]Ti

6 6
+ Z 0R 0)(AOA8A)

:: + , , ,A0)

+ (.r .)(ArAr.)
I I I I

+ (Ofa)(AaAa)
I I

+ (fl0.a)(AOAa.) +... Ti

where

0 . A...AQA -... 1 -1

1 i

,% '.... .-.... ;..:.... . . .. .. .o....-. :.....' ..... ...- ... ... ". S . . . .-.... ,-.. .. ............ * , .S. .S '."



9

-A A...AiQAi- ...A -1

ir A ... AiQirAi- 1,A 1 -1 (2.20)-1

0 a - A ...AiQaAi-1 A.

The problem of computing derivatives like those above also arises in robot

dynamics (Brady. et al. 1982). Recursive methods as proposed by Hollerbach (1980)
and Book (1983) reduce the problem to linear complexity, but nonlinear complexity

schemes might actually be faster (Luh, Walker and Paul 1980: Walker and Orin 1982).

As an example we give the matrices 83AI /3a 1 and o92 Al 1/taa 1 for the first link of

the Stanford manipulator. Its variable is 0e. and the. ideal link parameters are a =

-900, a = d = 0. One obtains, up to second order in Aa

cosI 0 -sine 0
sin8, 0 COSd 1  0

A1 0 -1 0 0 (2.21)
0 0 0 1

/ 0 -sined 0
0 cos 0 0
0 0 +1 0 A ...

0 0 0 0 1

/ 0 0 sine 0
0 0 -cose 0
0 +1 0 0 Aa1AC 1 +...

0 0 0 0

where we left out 3 other linear terms and 15 other quadratic terms.

At this point there is no difference between link variables and link parameters, and

one could write

T(pi + Api) - T(pi) - Tr(pi) - T'(pi) • (2.22)

24 olT 24 24 a2T

zp +: 2: p P ApiAp.j

24 24 24

K, &p, + &p, L Ap
i~~i jw u
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Here T, K. and L.. are 4 x 4 homogeneous matrices, with the indices i and j not being

the matrix index but running from 1...,24. There are 24 matrices K.. Since

L.. a L.. (2.23)
'J J1

there are 24 e 2512 - 300 matrices L... Computation of the 24 matrices K by hand is

still feasible (and was done by Wu (1984) for the general case), but computation of
the 300 second order matrices is better left to some algebraic manipulation routine.

The K. and L.. matrices are not as complicated as might appear at first sight because
not all the errors Ap1 ..... Ap24 are of the same importance.

Considering one particular A. matrix, like (2.2), it can be seen that the 3 x 3 rotation

- matrix in the upper left-hand corner involves only the rotational errors A6. and A i,I "I

4. while the translational part, which are the first three elements of the last column,
involve both the translational errors Aa. and Ar. as well as the rotational error AG.,

but not A.. The way these errors in the individual (A. + AA) matrices propagateII I

" into the final (T + AT) matrix becomes more transparent if the multiplicative structure

(2.3), (2.4) is changed to a polynomial one that separates rotation and translation. In
" such a representation the total rotation R and total translation T derive as follows

from the individual R. and t. of the .A.. The total transformation consists of aI II

rotation ' followed by a translation t so that

Ax + t - R1 [...[R(R x + t6 ) + t]} + t1  (2.24)

Comparison of terms shows that

'=.R R R R R R (2.25)
": ~ ~ R R RR2R3RRt 6

+ R 1 R2R3R4t 5  (2.26)

-. R

i: + R R RRt4

+R RRt 3

+ R t 2
12

*+ 1

Not all the errors occur in all the matrices and vectors. Upon inspecting (2.2), one

sees that only the rotational errors AG. and Aai' i , 1 ... 6 affect the total rotation

% % % *. % *-. ". -. % %- **% .- *_, % ", ,. .."
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' while all errors AGi, Aa., Ar i, Aa., i - 1,...,6 affect the total translation t-with

exception of Aa This remark is correct to any power in the expansion in the

errors. Up to first order the perturbed AR and AT are not made up of 4 x 6 a 24

and 4 x 21 = 84 terms. In the perturbed AR there are only 12 terms linear in AG. and

Aa, i = 1,...,6 and no terms in Ar. and .Aa.. In the perturbed total translation At thereI I e

are 6 terms linear in Aa i, i = 1,....6 and 6 terms linear in Ar., i = 1,...,6. In the sum

for At there are also (6-i) terms in Aa i, i - 1....,6 and (7-i) terms in A#,, i - 1 ..... 6

* Altogether there are only 60 and not 84 terms. Errors in the joint coordinate AG1

. and parameters Aa 1 propagate most into the total translation t, errors A8. and A. of
II

higher indexed links less so, until the error Ac 6 of the last link does not affect the

total translation at all.

3 ERROR EVALUATION

The forward transform matrices used hitherto are redundant. Physically the position

of the end effector is characterized only by 6 scalar quantities. Three of them are

the components of the translation vector, or T 14 , T2 4 and T3 4 of the 4 x 4 T-matrix.

The other three could be chosen as some three components of the rotational part of

the T-matrix, say T 1 1, T12 and T 23 These are the direction cosines between two of

- the reference axes and the three axes of the end effector. The way the rotation

parameters are measured for calibration purposes is largely a matter of convenience.

Other components of the rotation matrix or combinations of components could be

used. Mathematically the most elegant, but in practice not least cumbersome way

* would be to use the axis of rotation which is the eigenvector of the rotation matrix

* and the angle of rotation C which can be deduced from the trace Tr R of the

*" rotation matrix as

" = arc cos[(Tr R - 1)12J (3.1)

The rotation could then be described by the three components of the rotation vector
which points in the direction of the eigenvector of R and is of length tg(C12) where

tg2 (C12) - (2 - Tr R)/Tr R (3.2)

, In the following we will not specify how the resulting transformation is represented,

but we will merely speak of Cartesian coordinates x, ... x6 , which are not necessarily

- of vectorial character. They are simply six scalar functions that describe the

position of the end effector.



12

The first task is to find the 24 errors Ap 1 ... Ap24 from 6 measured Cartesian errors

Ax 1 ... Ax 6 , If one expands the difference between the position

xi(p 1 .... P6 ; Ap 1 ... AP6; P 7 '...p2 4 ; Ap7 ... Ap 2 4 )

the real robot reaches when its joint coordinates have the values p ,...p6 , and the

position

xI(PII ..... P6; 0.....0; P71 .... P24 ; 0...,0)

the ideal robot would have reached with the same values p I.... P6 of the joint

variables in terms of the joint errors

/kp I1 ... AP24

one obtains

xi(p I... P6 ; Ap I.... PP6; P7 ..... P2 4 ; Ap 7 ... Ap2 4 )

"xi(p p I.. P6; 0...0; P7...p 2 4 ; 0.....0)

* Axi(PjAp.) i a 6

24 ox. 24 24 a2x.
1: 1 '&P~ i . Ap.Ap + (3.3)

* 1 pip opapk k

AP .0 Ap 0
j jI se(1.....24) j Of se(1,....24)

k s,(1 .... 24)

The first (real) values of x I ...,x 6 are measured, the second (ideal) values of xV ... x6

and the derivatives are computed from the ideal forward solution. The problem of

calibration is to solve the system of six equations (3.3) for the 24 unknowns

IAP I... Ap 2 4 " Clearly, the problem is undetermined because the same Cartesian errors

can be caused by various different sets of joint errors. A strictly consistent

evaluation of errors would only be possible if their number were restricted to six.

These six could then be found from the six equations (3.3). If less than eighteen

errors Api do not vanish identically, they can be consistently evaluated if there is no

explicit variation of Api with p., i.e., if the errors do not change across the working
(0) (1) (2) (3)space of the robot. In that case, four sets of calibration points xi( , xi , xi 2, xi

can be used to form a set of 24 Cartesian variables. This gives 24 equations of the

form

A-" .
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*24 24 24 (3.4)
Ax. Ki Apj +ApL' p I l.1.24

1 2: . jk k
Jul k-1

where

K.* n * (3.5)j Op

Ap -=0
Ve s e(1...24

and

a 2x~n
L n• L + n  C1 x (3.6)ik kj apjo1Pk

-k se(1 ... 24)

are operators that are linear and bilinear acting on Ap.. They are known from the
four real forward solutions used to find x.(01, x.' , x 12 , x 1 . If the expansion (3.3) is

JI I I I

taken to linear terms only, (3.4) is a linear system of 24 equations in 24 unknowns,

which can be solved by inversion. If the expansion (3.3) is taken to quadratic terms,

(3.4) is a system of 24 quadratic equations in 24 unknowns. Geometrically this is

equivalent to finding the intersection of 24 quadratic surfaces in a space of
dimension 24. The system could be solved by using a linear guess followed by a
Newton-Raphson iteration. Since the expansion (3.3) could, however, be combined to

* any order of Api, it seems more consistent to solve it by inversion of the series

(3.4). One obtains

A * [K-1]i { Ax. - Ax [K- ] .Ljk [K- 1 ]kAXt * ... (3.7)
s I s sjjA kt j

with all the indices running from 1...24, summation over double indices being

understood.

If the errors Api vary across the working space of the robot, evaluation of (3.7) is

not entirely consistent, because the data sets on the left-hand side of (3.4) have been

obtained for different sets of joint variables, and thus for different errors Ap.

:....,... ......... ':.::..
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(0) (1) (2) (3)Each of the points x. , x , x. xi gives an undetermined system of equations
with infinitely many solutions. The solution (3.7) satisfies each of these four sets of

six equations, but there is no guarantee that it is actually the physically correct

solution for each of the four points. Continuity arguments indicate that the common
solution should be close to the physically correct ones. If there is no explicit

variation across the working space, the common solution is indeed the correct one
for each of the points. If there is an explicit dependence, the choice of four

calibration points becomes problematic: the nearer the four calibration configurations
are chosen to each other, the more ill-conditioned the problem becomes

mathematically; the further away the points are chosen, the more the results Ap 5 will
represent some average over the six-dimensional volume covered by the four points.

The whole work space of the robot could, however, be divided into six-dimensional

simplexes with seven corners each, for each of which the Ap are computed and

attributed to the center of the seven points involved. The resulting

overdetermination of the problem would require the use of pseudo-inverses. Some

polynomial fit could then be used to represent the behavior of the errors Ap

"" throughout the working volume.

4 REVERSE TRANSFORMATION

-" Since at present there is no standard algorithm available to construct reverse

solutions in general, they are usually found by geometric intuition or trial and error.
Such an approach is, however, likely to fail if the forward solution becomes complex
in the presence of errors. The resulting trigonometric equations become too

complicated to be solved. They can be transformed to algebraic equations via a
-* half-tangent substitution (Duffy 1980), but these are of high order and difficult to

-" handle.

° The perturbation approach developed so far avoids the need for the integral reverse
transformation, what is needed are relationships between perturbations in joint and

laboratory space. Unlike the forward and the reverse transforms, which are highly
nonlinear, there is a linear relationship between differential changes in the Cartesian

, and differential changes in the joint coordinates. Since the forward solution of the

perturbed robot Is known, It can be differentiated to obtain that linear transformation,
the Jacobian. Near the singular points of the robot, the joint motions become

linearly dependent and the Jacobian becomes singular. For most positions, however,

the Jacobian can be Inverted, although that is a time-consuming process. An

additional complication arises because the forward transformation describes how 6

4.

* * . . u'i;,,r l- a WJ ~ l~l l- .*,J S l.t - ,- w ... r ..- 
4 t , : .
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variables x1'...,x 6 depend on 6 variables p, .... P6 and on 18 parameters p7 ,...,p 24 " In

the inverse transform the six variables p, ... P6 depend on the six Cartesian

coordinates x ....x6,  but the eighteen quantities p7 .... P24  parameterize the

transformation. In the case of the real robot 24 additional error terms AP ... AP24

appear as parameters.

In order to find the difference of the two forward Jacobians let us first consider a

Taylor expansion of the forward transformation.

xi(Pil...P6; APil .... AP 6; P70 ... PP24; AP7 ...... &P24)

" xi(p I... 1P6; 0'...0; p7 .... P2 4; 0.... 0)

6 ax. 24 ax.
S ' Apj + 7 '&P +... is 1.....6 (4.1)

Ap =0 Ap =0
to r ?or

j 0 sf (1,...,.24) j 0 se(1 ..... 24)

24 24 9 2X.

+ k - j o j o pk " P k 
+

sfor
j 0 s (1 ..... 24)
k 0 s e(1,...,.24)

This expansion is with respect to all Ap., j = 1,...,24 values. It is taken relative to

the position of no errors at all, which is the position the ideal robot would have

reached.

By definition 0 = Ap7 = ... = Ap24 for the ideal robot and the ideal Jacobian is

ax = 1 (4.2)

idl ......

APkf 0
k k (1,...,24)ApkU

• o:, .:..-.-...: ... .. ... ..; ' J % : : ., .:: :-for% - ..% ...-.
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The ideal Jacobian of (4.2) and the other coefficients of equation (4.1) cannot even in

principle, be measured on the real robot which is to be calibrated. They can only be

computed from the ideal forward solution.

Another expansion can be performed with respect to controllable changes pl ..... p6 ,

with the uncontrollable errors Ap 1 .... Ap2 4 being held constant at their actual value:

xi(p 1 ....P6; apI + AP 1 .... P6 * P6; P7 .... P24 ; Ap7 ..., p24)

Sxi(P 1..... P6; Ap 1 ,...,AP6; p7 .... P24 ; AP 7 ,...,Ap24 )

6 ax.
2p .' p i * 1,....6 (4.3)

ap .r0 Ap 0
5for 'for

j S ( ...6) S e( .. 4

P,."6 6 O2X.

I- k1 apap
j-1 k-1 - j k

ap Ap 0 0
Sf or for

%"- j s e (1,....6 ) j f (1.- ,2 4 )
... k 0 se( .... 6) k e 10..... 24)

This expansion is taken relative to the position with errors introduced because of

non-vanishing Ap1 ....AP2 4' which is the position the real robot would reach without

. adjustments of 3p I.... lap 6 " By definition of the real robot, the errors Apk for k

1,....24 do not vanish and the real Jacobian is

." ax i i 1....6 (4.4)

i ~ ~ ~ C j p ..

ap Ap 0 0
kf or kfor

j 0 k ( k.. 6) k (1,...,24)

- where it is understood that Ap i .... Ap2 4 are being held constant at the error values of

the actual robot. In principle, the real Jacobian (4.4) can be measured for the real

robot. This could be done by comparing the changes in Cartesian positions with

* changes in 3p 1,...,6p,. These can be controlled arbitrarily, unlike the errors

Apil,...,Ap 2 4 over which there is no control

# - - . . . . . . . . . - . . .. - - . . . . . o =.. . . * * , .. . '. . . " . , ' -. - . . - . - , . . . . % ; . " . , % .
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The task of calibration compensation is now to compensate by adjustments of

Pl ....56 which, according to (4.4) propagate into Cartesian changes through the real

Jacobian, for the Cartesian changes introduced by the errors Ap1 .... Ap 24 which,

according to equation (4.2) propagate through the ideal Jacobian. The equation to be
satisfied is

6ax.I

3 0 Ap 0
sf or sfor

j 0 s ( ..... 6) se(1.-..24)

-'" a2x P "

-72 -p~ api k 4

Iu k-i I k Iap
kp =a0 Ap 0 0

f or 'for
' s S j f10..... 6) s f10..... 24)

s # ke11 ...6)

24 a~x 24 24 a12x.
+ P i- L ApjAPk

in I ja u a a a k
Ap .0Apa .0

' or sfor
,. ~~j 0 s 1 e.. 4 s 1 #.. 4

k s #E(1....,2 4)

"0 i - 1...6 (4.5)

This is of the form

Jri p. + 3p.H'k SPk * "'" + f. • 0 (4.6)

" with all indices running from 1....,6, summation over double indices being understood.

The linear coefficient is the real Jacobian of (4.4), the quadratic coefficient is

S 2x (47)
jk •(pjapk

ap a0 Ap ,0
'for 'for

s • j( f.....61 sE1.....241
a •' k,(1,...,6)
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The inhomogeneous term is

*24 a.24 24 aX
f x I AP + Y1 ApJAp k (4.8)

C) pul Jul k-i ljp

Ap - 0 Ap *0
'for "for

k 0 se(l,.....24)

and can be taken to any power in the errors Ap. The equation (4.6) is of the same

structure as equation (3.4) and can be solved by inversion with the result

' J 1 " If +f EJr 1 J. H k E ] ktft f + "  (4.9)

where now all the sums run from 1.....6, summation over double indices being

understood.

- If Ap7 = ... • Ap24 a 0 one obtains simply that

ap A Api i 1....6 (4.10)

because for that case J r J ahd the two Jacobians close. In this case, the errors

Ap i of the joints are compensated by adjustments - Api of the joints themselves. If

the errors in the joint parameters Ap 7 .... Ap 2 4 do not vanish, they cause errors in the

Cartesian coordinates that are carried forward through the ideal forward solution and

ideal forward Jacobian. because the robot was assumed error free. The Cartesian
errors are compensated for by adjustments that are carried forward through the real

transform and Jacobian. This is reflected in equation (4.9) insofar as the correction

terms [Jr 1 I and H' refer to the real robot, while the source terms f. according toJk I

. (4.8) refer to the ideal robot. The expansion (4.9) is essentially an expansion of the

non-closing product [Jr- 1 J1i # 1.

5 FINAL REMARKS

The problem under investigation is differential in nature because small differences

between the real and the ideal configuration are being considered. In a similar way,

robot dynamics is concerned with differential changes of both world and joint

coordinates with respect to time. The dynamic problem becomes tractable because,

* - .. % . .*.~~* , ***I
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unlike position transforms, which are highly nonlinear, the rate of changes of the

joint coordinates and the changes of the Cartesian coordinates are linearly related.

The Taylor expansions of the present paper essentially linearize the problem in a

similar way, and make its inversion possible.

In recent years the actual computational time required for the solution of the

dynamic problem of ideal, error-free robots has been reduced considerably by the

use of iterative schemes (Brady, et al. 1982; Megahed and Renaud 1982). The

implementation of special purpose processors further decreases computational times

by up to two orders of magnitude (Duelen, Kirchhoff and Held 1984). One could hope

that similar economics could advance the technique developed in this paper to actual

on-line implementation. On the kinematic level this would mean calibrated motion of

the real robot. On the dynamic level the goal is the use of the real rather than the

ideal Jacobian.

In literature, it has been recognized (or rather remembered) that screw theory or

motor calculus are suitable instruments for handling this type of problem (Ball 1900;

v. Mises 1924; Rooney 1978; Featherstone 1983, 1984; Sugimoto and Duffy 1982;

Sugimoto 1984; Hunt 1984). The six components of the most general displacement

possible are represented without redundancy in that six dimensional vectorial

approach, and the redundancy of the 4 x 4 homogeneous matrices is avoided. For

notational reasons we prefer the purely multiplicative structure of the conventional

notation accepted by roboticists.
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